FOR HEALTH

HEALTHY BUILDINGS

Our goal is to improve the lives of all people, in all buildings, everywhere, every day.

A Program at the

HARVARD T.H. CHAN SCHOOL OF PUBLIC HEALTH

T.H. CHAN SCHOOL OF PUBLIC HEALTH

The 'Why'

The Risks of School Closure

Keeping Schools Closed

The Long-Term Individual and Societal Costs

Discussion of risk needs to consider risks of closures

- Virtual dropouts
- Food security
- Physical activity
- Socialization
- Abuse, neglect, exploitation, violence

D T.H. CHAN

HOOL OF PUBLIC HEALTH

3

T.H. CHAN

The 'Who'

Kids and Adults

What do we know about kids spreading covid-19?

Less likely to get infected than adults Less likely to suffer most severe consequences Less likely to transmit

Plans are designed to reduce risk for adults and kids

The 'When' to Open

Open Based on Community Spread Metrics

T.H. CHAN SCHOOL OF PUBLIC HEALTH

The Path to Zero and Schools: Achieving Pandemic Resilient Teaching and Learning Spaces

The single best policy to suppo is suppression of COVID to near rigorous social distancing, redu and Supported Isolation (TTSI)

Covid Risk Level	Case Incidence		
Red	>25	daily new cases per 100,000 people	
Orange	10<25	daily new cases per 100,000 people	
Yellow	1<10	daily new cases per 100,000 people	
Green	<1	daily new case per 100,000 people	

The 'What' to Do Risk Reduction Strategies for Reopening Schools

SCHOOLS FOR HEALTH

Risk Reduction Strategies for Reopening School

June, 2020

COVID-19

Authors

What strategies should schools consider to reduce risk of COVID-19 transmission?

The 'How To' of Ventilation

Measuring and Estimating Outdoor Air Ventilation Rates in Classrooms

SCHOOL OF PUBLIC HEALTH

Disclaimer

The Harvard Healthy Buildings team was not retained as a formal consultant to the town of Brookline and is not an engineering firm or HVAC contractor.

The goal of the site visit on Saturday, August 15, 2020, was to demonstrate techniques used in our field for measuring and estimating outdoor air ventilation rates.

The testing followed standard procedures and techniques that our team and others have used for years to measure and estimate ventilation rate in buildings.

However, this was not a formal engineering assessment or HVAC survey.

Note the limitations at the end of this slide deck that are inherent in measuring and estimating ventilation rates.

Measuring outdoor air ventilation rates using a balometer (air flow capture hood)

HARVARD T.H. CHAN

SCHOOL OF PUBLIC HEALTH

Estimating outdoor air ventilation rates using carbon dioxide as a tracer

Building up CO₂ concentrations with dry ice

Testing the impact of opening windows approx. 6 inches

SCHOOL OF PUBLIC HEALTH

HARVARD T.H. CHAN

T.H. CHAN

Plots showing the buildup, and decay, of CO₂, used to estimate ventilation rates

Example CO₂ decay curve used to assess ventilation rates across three conditions

HARVARD SCHOOL OF PUBLIC HEALTH

Target air changes per hour (ACH) (for basis, see: <u>https://tinyurl.com/portableaircleanertool)</u>

TARGET IS AT LEAST 5 TOTAL AIR CHANGES PER HOUR				
	Ideal (6 ACH)			
	Excellent (5-6 ACH)			
	Good (4-5 ACH)			
	Bare minimum (3-4)			
	Low (<3 ACH)			

Minimum outdoor air ventilation for schools based on ASHRAE 62.1 (2019)

Calcs based on ASHRAE											
ASHRAE				500sq ft room*		1000sqft room*					
				Default							
				occupancy (per							
		cfm/person	cfm/sq ft	1000 sq ft)		cfm	cfm/person	ACH	cfm	cfm/person	ACH
Classrooms	5-8 year olds	10	0.12	25		185.0	14.8	2.8	370.0	14.8	2.8
	9+ years old	10	0.12	35		235.0	13.4	3.5	470.0	13.4	3.5
	-				*assumes 8 foot ceiling	g			*assumes 8 foot	ceiling	

Baker School // Room 116 // August 15, 2020

Baker School // Room 115 // August 15, 2020

Baker School // Room 117 // August 15, 2020

Baker School // Room 126 // August 15, 2020

Runkle School // Room 118 // August 15, 2020

Runkle School // Room 123 // August 15, 2020

Limitations of this methodology

- Values measured on one day will reflect only the conditions experienced that day, both within and outside the building. Infiltration and flow through windows is highly dependent on outdoor weather conditions, whether the classroom and hallway doors are open, and whether the exhaust system (gravity or mechanical) is working as intended.
- Opening windows and doors is not a permanent solution and should not replace efforts to ensure ventilation systems are working properly.
- Not all areas of the room can be considered well mixed. Ideally the mechanical system was originally designed to more thoroughly mix the central area of a classroom but corners or other peripheral areas might actually experience less ACHs
- Our target ACH values are based on classroom default densities as expressed in ASHRAE standard 62 (25 students/1000 sq ft). These densities should not be exceeded not only because of an effective reduction of the equivalent ventilation rate per person considered in our calculations (~30 cfm/p), but also because of the risk of droplet transmission if not preserving the recommended physical distancing.
- Limitations of using CO₂ to estimate ventilation:
 - For the purpose of infectious disease control, filtering recirculated air with high efficiency filters (MERV 13 or higher) provides additional air flow capable of diluting bioaerosols. Estimating air exchange rates with CO₂ is only capable of approximating the rate of outdoor air supply. For more details on how to combine the flow from adequately filtered air, please use our portable air cleaner calculator (tinyurl.com/portableaircleanertool)
 - The results are sensitive to errors due to poorly calibrated CO₂ sensors, proper selection of the start and end points of the decay, flows from other spaces within the building, as well as changes in ventilation rate during the measurement due to changes in pressure differentials within the building and in the building envelope.

Definitions

ACH	Air changes per hour (1/h)
CFM	cubic feet per minute
CO ₂	carbon dioxide
OA	Outdoor air

For more information and additional resources, visit: <u>Schools.ForHealth.org</u>

Home COVID-19 Reopening Strategies COVID-19 FAQs Relevant Research

COVID-19 + SCHOOLS: WHAT TO KNOW

COVID-19 REPORT

RISK REDUCTION STRATEGIES FOR REOPENING SCHOOLS

READ THE REPORT

HARVARD

T.H. CHAN

COVID-19 FAQS

20 QUESTIONS EVERY PARENT SHOULD ASK BEFORE SENDING KIDS BACK TO SCHOOL

READ THE FAQS

For Health Menu

SCHOOL OF PUBLIC HEALTH

FOR HEALTH

HEALTHY BUILDINGS

Our goal is to improve the lives of all people, in all buildings, everywhere, every day.

A Program at the

HARVARD T.H. CHAN SCHOOL OF PUBLIC HEALTH

